Middleware Design for Swarm-Driving Robots Accompanying Humans
نویسندگان
چکیده
Research on robots that accompany humans is being continuously studied. The Pet-Bot provides walking-assistance and object-carrying services without any specific controls through interaction between the robot and the human in real time. However, with Pet-Bot, there is a limit to the number of robots a user can use. If this limit is overcome, the Pet-Bot can provide services in more areas. Therefore, in this study, we propose a swarm-driving middleware design adopting the concept of a swarm, which provides effective parallel movement to allow multiple human-accompanying robots to accomplish a common purpose. The functions of middleware divide into three parts: a sequence manager for swarm process, a messaging manager, and a relative-location identification manager. This middleware processes the sequence of swarm-process of robots in the swarm through message exchanging using radio frequency (RF) communication of an IEEE 802.15.4 MAC protocol and manages an infrared (IR) communication module identifying relative location with IR signal strength. The swarm in this study is composed of the master interacting with the user and the slaves having no interaction with the user. This composition is intended to control the overall swarm in synchronization with the user activity, which is difficult to predict. We evaluate the accuracy of the relative-location estimation using IR communication, the response time of the slaves to a change in user activity, and the time to organize a network according to the number of slaves.
منابع مشابه
An Architecture for Swarm Robots
The area of collective and cooperative behaviour in swarm robots is an exciting field of study. Recent technological and economic developments have made it possible to build medium to large scale swarms of quite sophisticated mobile robots. We review recent mobile computing technologies and describe our architecture for a swarm of tri-wheeled robots that can exchange information via wireless ar...
متن کاملPareto design of fuzzy tracking control based on the particle swarm optimization algorithm for a walking robot in the lateral plane on slope
Many researchers have controlled and analyzed biped robots that walk in the sagittal plane. Nevertheless, walking robots require the capability to walk merely laterally, when they are faced with the obstacles such as a wall. In walking robot field, both nonlinearity of the dynamic equations and also having a tracking system cause an effective control has to be utilized to address these problems...
متن کاملDirect adaptive fuzzy control of flexible-joint robots including actuator dynamics using particle swarm optimization
In this paper a novel direct adaptive fuzzy system is proposed to control flexible-joints robot including actuator dynamics. The design includes two interior loops: the inner loop controls the motor position using proposed approach while the outer loop controls the joint angle of the robot using a PID control law. One novelty of this paper is the use of a PSO algorithm for optimizing the contro...
متن کاملDesigning an Optimal Stable Algorithm for Robot Swarm Motion toward a Target
In this paper, an optimal stable algorithm is presented for members of a robots swarm moving toward a target. Equations of motion of the swarm are based on Lagrangian energy equations. Regarding of similar research On the design of swarm motion algorithm, an equation of motion considered constraints to guarantee no collision between the members and the members and obstacles along the motion pat...
متن کاملA Robot Swarm Assisting a Human Fire-Fighter
Emergencies in industrial warehouses are a major concern for fire fighters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist fire fighters in searching a large warehouse. In this paper we discuss the technology developed for a swarm of robots assisting fire fighters....
متن کامل